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Abstract. We show that each exceptional vector bundle on a weighted pro-
jective line in the sense of Geigle and Lenzing can be obtained by Scho�eld
induction from exceptional sheaves of rank one and zero. This relates to re-
sults of Ringel concerning modules over �nite dimensional k-algebras over an
arbitrary �eld.

1. Introduction
Scho�eld induction [13] was applied by Ringel [11] in hereditary length cate-

gories. In [12] Ringel used this construction to show that each exceptional repre-
sentation for a �nite quiver without oriented cycles can be exhibited by matrices
having as coe�cients only 0 and 1. Recall that an object M in a hereditary cate-
gory is called exceptional if Ext1(M, M) = 0 and End(M) is a skew �eld.

In this paper we study Scho�eld induction in the category of coherent sheaves
over weighted projective lines in the sense of Geigle and Lenzing [2]. The main
result is the following theorem.
Theorem 1. Let M be an exceptional vector bundle of rank greater than one
on a weighted projective line X over an algebraically closed �eld. Then there are
exceptional coherent sheaves X, Y with the properties

(i) HomX(X,Y ) = HomX(Y,X) = Ext1X(Y, X) = 0 and there is a non-split exact
sequence

η : 0 → Y v → M → Xu → 0
where [u v] is the dimension vector of an exceptional representation of Θ(n) and
n = dim Ext1X(X,Y ).

(ii) rkY < rkM and rkX < rkM .
Here Θ(n) denotes the quiver

--

-
(n arrows).... 21

and rk denotes the rank of a coherent sheaf. If η is as in (i) then the condition
rkX < rkM is clearly satis�ed since the rank function is additive and Y as a
subobject of a vector bundle has positive rank. We emphasize, however, that it is
important to have the other condition rkY < rkM , because otherwise we cannot
apply induction. In order to show this we use a result of Geigle and Lenzing
concerning perpendicular categories. Note that in the case of modules over a �nite
dimensional path algebra the role of the rank is played by the dimension and then
both conditions of (ii) are automatically satis�ed. Moreover we introduce the
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concept of an adapted tilting bundle in order to have similar conditions as in [11,
Lemma 3.3]. Finally, we show that in our situation the last term of the exact
sequence η can be chosen as a vector bundle or a simple sheaf of �nite length.

The exceptional vector bundles of rank one are well known. They are described
in [9]. On the other hand also the exceptional sheaves of rank zero are known (see
[4, Proposition 4.2, Proposition 4.4]). In that paper the case of three weights is
considered, however the results easily generalize to the general situation. Then
applying the theorem successively we can obtain all exceptional vector bundles
on X from exceptional sheaves of rank one or zero. In [12] Ringel used Scho�eld
induction to show that each exceptional module over a path algebra of a quiver
can be represented by matrices having as coe�cients 0 and 1. We are going to
prove a similar result for exceptional modules over canonical algebra in the sense
of [10]. For this one should use that the derived category of modules over a
canonical algebra is equivalent to the derived category of coherent sheaves over
the corresponding weighted projective line. In contrast to the situation of path
algebras also the parameters in the de�nition of the algebra will play a role. We
will study this problem in a forthcoming paper.

We would like to thank the referee for helpful comments.

2. Notations
We recall the concept of weighted projective lines and refer the reader for details

to [2].

2.1. Throughout this paper k denotes an algebraically closed �eld. Let L(p)
be the rank one abelian group on generators ~x1, ~x2,. . . ,~xt with relations p1~x1 =
p2~x2 = · · · = pt~xt =: ~c. Further for a sequence of integers p = (p1, . . . , pt)
consider the algebra k[X1, . . . , Xt] with the L(p) grading de�ned by deg Xi =
~xi. Moreover for a sequence of parameters λ = (λ3, . . . , λt) we denote by S =
S(p, λ) = k[X1, X2, . . . , Xt]/I(p, λ) where I(p, λ) is the ideal generated by the
elements Xpi

i −Xp2
2 +λiX

p1
1 , i = 3, ..., t. Because I(p, λ) is a homogeneous ideal the

algebra S = S(p, λ) is L(p)-graded. The weighted projective line X = X(p, λ) is by
de�nition the projective spectrum of the L(p)-graded algebra S(p, λ). We denote
by coh(X) the category of L(p) graded coherent sheaves on X and by vect(X)
(respectively coh0(X)) the full subcategory of vector bundles (respectively �nite
length sheaves). Note that there are no non-zero morphisms from objects coh0(X)
to objects from vect(X). The category coh(X) is hereditary and admits Auslander-
Reiten sequences. The Auslander-Reiten translation τX is given by degree shift
with the dualizing element ~ω = (t − 2)~c −∑t

i=1 ~xi and gives rise to Serre duality
DExt1X(F, G) ' HomX(G, τXF ).

2.2. We will need the concept of tilting sheaves and exceptional sequences in
coh(X). For details concerning this subject we refer to [2], [5].

De�nition 2.2. An object T ∈ coh(X) is called a tilting sheaf if the following two
conditions are satis�ed

(i) Ext1X(T, T ) = 0;
(ii) If X ∈ coh(X) satis�es HomX(T, X) = 0 = Ext1X(T,X) then X = 0.
A tilting sheaf for which every indecomposable direct summand belongs to

vect(X) is shortly called a tilting bundle.
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In [2] it was shown that T =
⊕

0≤~x≤~cO(~x) is a tilting bundle, which is called
furtheron the canonical tilting bundle. Here L(p) is considered as an ordered group
where

∑t
i=1N~xi is its set of non-negative elements.

A sequence of exceptional objects in coh(X) of the form (M1, . . . ,Mr) is called
an exceptional sequence if for all i > j we have HomX(Mi,Mj) = 0 = Ext1X(Mi,Mj)
[8]. We denote by s the rank of the Grothendieck group K0(X) := K0(coh(X)). An
exceptional sequence in coh(X) of length s is called a complete exceptional sequence
and an exceptional sequence in coh(X) of length 2 is called an exceptional pair.
It is well known that the indecomposable direct summands of a multiplicity-free
tilting sheaf in coh(X) can be ordered in such a way that they form a complete
exceptional sequence.

3. Exceptional vector bundles over wild weighted projective lines
3.1. Assume that X is a weighted projective line of wild representation type. Let
M ∈ vect(X) be an exceptional vector bundle.
De�nition 3.1. We call a tilting bundle T adapted to M if the following two
conditions are satis�ed

(i) Ext1X(T,M) = 0;
(ii) There is a monomorphism T ↪→ M⊕t for some natural number t.
We recall that there is a function δ : L(p) → Z de�ned on generators by the

formula δ(~x) = p
pi

where p = l.c.m.(p1, . . . , pt). Moreover, for a non-zero coherent
sheaf on X the slope µ(E) is de�ned as the quotient deg E

rkE where deg denotes the
degree which is a linear form on K0(X) de�ned by degO(~x) = δ(~x) for ~x ∈ L(p).
Finally, a non-zero vector bundle F is called semistable if for each non-zero sub-
bundle F ′ we have µ(F ′) ≤ µ(F ). For more details we refer to [2].
Lemma 3.1. For each vector bundle M there exists a tilting bundle adapted to M .
Proof. Let T =

⊕
0≤~x≤~cO(~x) be the canonical tilting bundle. Let ~y ∈ L(p) be

such that µ(O(~x+~y+~ω)) < µ(M s)−(rkM−1)δ(~ω) for all ~x with 0 < ~x < ~c where
M s denotes the maximal semistable subbundle of M . Then we conclude from [7,
Theorem 2.9] that HomX(M,T (~y + ~ω)) = 0. Applying Serre duality it follows that
Ext1X(T (~y),M) = 0.

Assume moreover that ~y satis�es µ(O(~x+~y)) < µ(M)−p−δ(~ω) for each ~x with
0 < ~x < ~c. Then by [7, Theorem 2.7] we have that HomX(O(~x+~y),M) 6= 0. Since
by [5, Lemma 10.3] each non-zero morphism from a line bundle to a vector bundle
is a monomorphism we obtain a monomorphism T (~y) ↪→ M⊕t for some natural
number t. Thus T (~y) is a tilting bundle which is adapted to M . ¤
3.2. Let M be an exceptional vector bundle. We choose a tilting bundle T adapted
to M . We denote dimExt1X(M, T ) = m and consider the universal extension

0 → T → M ′ → M⊕m → 0.

By de�nition the sequence above is a universal extension if the connecting homo-
morphism in the long exact sequence obtained by applying the functor HomX(T,−)
is an isomorphism. Then M ′ ⊕M is a tilting bundle. The proof for modules over
�nite dimensional algebras [1] carries over to our situation, note that for this the
condition Ext1X(T,M) = 0 is necessary. The bundle M ′ which in general is not
multiplicity-free is called the Bongartz complement of M with respect to T .
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We have the following two analogs of results proved in [11, Lemma 3.3, Lemma
3.4].
Lemma 3.2. Let M ∈ vect(X) be an exceptional vector bundle, T a tilting bundle
adapted to M and M ′ the Bongartz complement of M with respect to T . Then M ′
is cogenerated by M and therefore HomX(M, M ′) = 0.
Proof. Since T is adapted to M there is a monomorphism α : T → M⊕t for
some natural number t. Then the arguments of [11, Lemma 3.3] can be applied,
replacing the module Λ by T . ¤

Proposition 3.3. Let M ∈ vect(X) be an exceptional vector bundle, T a tilt-
ing bundle adapted to M and let N be indecomposable in vect(X). The following
conditions are equivalent:

(i) N is a direct summand of the Bongartz complement of M with respect to T .
(ii) (N, M) is an exceptional pair in coh(X) and N is cogenerated by M .
The proof is a reproduction of [11, Lemma 3.3].

3.4. We have the following immediate consequence of Proposition 3.3
Corollary 1. Let M ∈ vect(X) be an exceptional vector bundle, T1, T2 two tilting
bundles which are both adapted to M . Further let M ′

i be the Bongartz complement
of M with respect to Ti for i = 1, 2. Then M ′

1 and M ′
2 have the same indecompos-

able direct summands (possibly with di�erent multiplicities). ¤

3.5. We now prove Theorem 1.
(i) If X is of tubular representation type the theorem was proved in [9]. In this

case the numbers u and v can be chosen to be 1. In the domestic case the statement
is easy and follows from the structure of the Auslander-Reiten components of the
category of vector bundles on X. Therefore we can assume that X is of wild
representation type.

We choose a tilting bundle T adapted to M . Let N1, . . . , Ns−1 be pairwise non-
isomorphic direct summands of the Bongartz complement M ′ of M with respect
to T . We denote by Ci = C(Ni,M) the closure of the full subcategory of coh(X),
with objects Ni,M , under kernels, images, cokernels and extensions. Then for
each i the category Ci is an exact abelian subcategory of coh(X). Moreover, since
rkM ≥ 2 by applying [6, Corollary 1] and [6, Theorem 1] we deduce that each Ci is
equivalent to a module category of a �nite dimensional k-algebra with two simple
modules.

Thus Ci ' mod(Hni) for some generalized Kronecker algebra Hni = kΘ(ni),
where ni denotes the number of arrows. Denote for each i by Yi (respectively Xi)
the simple projective (respectively injective) module in Ci.

We conclude from Proposition 3.3 that (Ni,M) is an exceptional pair and that
Ni is cogenerated by M . It follows from [11, Lemma 3.2] that M is not simple in
Ci. This implies that there is an exact sequence

ηi : 0 → Y vi
i → M → Xui

i → 0

for each i = 1, . . . , s− 1, where ui, vi ≥ 1.
(ii) Keeping the notations above we show that there is an i such that rkYi < rkM .

Assume contrary that rkYi = rkM for all i. Then vi = 1 and rk(Xi) = 0. Now we
have exact sequences

ηi : 0 → Yi → M → Xui
i → 0.
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Calculating dimension vectors we conclude that M is injective in Ci and ui = ni.
Therefore Ext1X(Xi,M) = Ext1Ci

(Xi,M) = 0 and Ext1X(M,Xi) = Ext1Ci
(M, Xi) = 0

for each i. Furthermore, applying the functor HomX(Xj ,−) to ηi, we see that
there is an epimorphism Ext1X(Xj , M) → Ext1X(Xj , X

ui
i ). Since Ext1X(Xj ,M) =

Ext1Cj
(Xj ,M) = 0 it follows that Ext1X(Xj , Xi) = 0 for all pairs j, i. Thus Ext(M⊕⊕s−1

i=1 Xi,M ⊕⊕s−1
i=1 Xi) = 0. We show that M ⊕⊕s−1

i=1 Xi is a tilting sheaf. For
this it remains to prove that if Z ∈ coh(X) satis�es HomX(M ⊕ ⊕s−1

i=1 Xi, Z) =
0 = Ext1X(M ⊕⊕s−1

i=1 Xi, Z) then Z = 0. We have Auslander-Reiten sequences
0 → Ni → Mui → Xi → 0.

Indeed, since (Ni,M) is an exceptional pair in Ci, Ni is a direct predecessor of
M in the Auslander-Reiten quiver. We already have shown that ui = ni. Finally,
because M is injective non-simple, the third term of the Auslander-Reiten sequence
is the simple injective Xi.

Applying the functor HomX(−, Z) to these sequences our assumptions for Z
imply that Hom(Ni, Z) = 0 = Ext1X(Ni, Z) for all i. Now our claim follows from
the fact that M ⊕⊕s−1

i=1 Ni is a tilting bundle in coh(X).
We have obtained a tilting sheaf on X containing only one vector bundle as

a direct summand. Applying the concept of perpendicular categories [3] we get
a tilting bundle on the usual weighted projective line containing only one vector
bundle as direct summand which is impossible. ¤
3.6. We do not know whether Xi can be chosen as a vector bundle. However we
have the following result.
Proposition 3.6. If the indecomposables Ni of the Bongartz complement of M
are ordered in such a way that (N1, N2, . . . , Ns−1,M) form an exceptional sequence
then the simple injective module X in C(Ns−1,M) is either a vector bundle or a
simple object in coh0(X).
Proof. We denote Ei = τ−XNi for i = 1, . . . , s − 2. Assume that X is not in
vect(X) and is not simple in coh0(X). Let Z be the quasi-top of X. Then we
have an exact sequence (?) 0 → W → X → Z → 0 in coh0(X). Applying Serre
duality the fact that (N1, N2, . . . , Ns−1,M) is an exceptional sequence implies that
Ns−1,M,E1, . . . Es−2 is an exceptional sequence in coh(X). Moreover it follows
from [6, Proposition 2.8] that the full subcategory generated by Ns−1,M coincides
with the right perpendicular category (E1, . . . , Es−2)⊥.

Applying the functor Hom(Ei,−) to the sequence (?) we get an exact sequence
0 = HomX(Ei, X) → HomX(Ei, Z) → Ext1X(Ei,W ) → Ext1X(Ei, X) = 0. Note
that Z does not belong to (E1, . . . , Es−2)⊥ because otherwise X is not simple
injective in this category. But all Ext1X(Ei, Z) = 0 for all i hence we conclude that
HomX(Ei, Z) 6= 0 for some i. Thus 0 6= Ext1X(Ei,W ) ' DHom(W, τEi) which is
impossible because W is a �nite length sheaf and Ei a vector bundle. ¤
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